
Page 1
Acknowledgement: Slides (provided by Dr. Abdallah Mohammed) mainly rely on the materials prepared by Y. D. Liang for the textbook “Introduction to Java
Programming, 10th Ed., Pearson Edu. Inc.”.

Dr. Firas Moosvi
Computer Science

University of British Columbia

Page 2

Previously…
§ Java constructs and data types

§ Variables: int, double, boolean, …
§ Displaying output: System.out.println()
§ Java Library: Scanner, Math, Character
§ Selection: if, if-else, switch
§ Loops: while, for
§ Methods

§You used these concepts for simple, interesting programs
§ Calculations: area of a shape, unit conversion, …
§ String processing: reverse, isPalindrome, count letters, …
§ Array processing: sum, max, min, copying, …
§ Simple games: guess the number, paper-scissors-rock,…
§ Project: Jeopardy game

§There are more interesting problems…

Page 3

Introduction to Objects
§The world consists of objects

§ Cars, people, places, animals, flowers, houses, chairs, etc

§We develop software to address issues in real-world
§ It makes sense to design software in terms of objects

Page 4

What are ‘software’ objects?
§ In a Java program, objects represent entities in the real-world

§ Each object has it’s own space in the memory to save
information about this object.

Q: What objects (entities) do you see in this game?

Page 5

What are objects?
§ Let’s look at one of these objects: the farmer object
§Any object:

§ has attributes: define what the object is
§ can perform actions: define what the object can do

We build our software with objects that work together in order to
achieve the required goal

Attributes:
• name: Mark
• weight: 60.5 kg
• location: (20, 10)

Attributes
• …
Actions
• …

Actions
• Move right
• Move left
• Move up
• Move down
• Feed animal

Object interaction

Page 6

Other Examples of OOP

Objects:
- Players
- Game
- GUI

Page 7

Objects:
- Spaceship
- Asteroids
- Bullets
- Game
- GUI

Other Examples of OOP

Page 8

Objects:
- Player
- Ghosts
- Power Pills
- Food items
- Game
- GUI

Other Examples of OOP

Page 9

Objects:
- Computer
- CPU
- Registers
- I/O devices
- Memory

Other Examples of OOP

CPU

COMPUTER

Page 10

Aim: Learn how to

• design objects,

• construct objects based on our design, and

• use objects

Page 11

Coding with objects
§How are objects created in the real-world?

§ TWO PHASES. Example: Cars.

Phase 1: Blueprint
• Attributes

• Behaviour (Actions)

Phase 2: Construction
In Java, all objects of a design
have the same actions and
attributes (although the attribute
values can be different).

Page 12

Page 13

Phase 1: Designing Objects
§A class represents the blueprint of a group
of objects of the same type.

§This class defines the attributes and
behaviors for objects.
§ Attributes

• defined as variables inside our class
• We call them “instance variables”

§ Behavior (actions)
• defined as methods inside our class

• Will discuss them later today!

• name: Mark
• weight: 60.5 kg
• location: (20, 10)

String name
double weight
int x, y

Page 14

Phase 1: Designing Objects, cont’d
§Example: the Farmer class

class Farmer {
//instance variables (attributes)

//methods (actions)

} Famer Blueprint

Page 15

Phase 1: Designing Objects, cont’d
§Example: the Farmer class

class Farmer {
//instance variables (attributes)
String name;
double weight;
int x, y;
//methods (actions)
//will add them later

}

name
weight
x
y

Famer Blueprint

§Remember: a class is just a blueprint for creating object
§ Classes store no data an perform no actions for an object

§ We need to create objects now!

Page 16

Phase 2: Creating and Using Objects
§Next, we need to create objects based on our class

name
weight
x
y

Phase 1: Farmer Class Phase 2: Object Construction

Page 17

• name: ??
• weight: ?? kg
• location: (??, ??)

Phase 2: Creating objects using new
§Using the new keyword
§We will do this inside the main method

public class FarmerTest {
public static void main(String[] args) {

Farmer f1 = new Farmer();
}

}

null name

0.0 weight

0 x

0 y

f1

A unique identity
for this object

f1

• name: null
• weight: 0.0 kg
• location: (0, 0)

Default values for
the attributes

Each object has its
own space in memory

f1

Page 18

• name: ??
• weight: ?? kg
• location: (??, ??)

Phase 2: Creating and using objects
§Using the new keyword
§We will do this inside the main method

public class FarmerTest {
public static void main(String[] args) {

Farmer f1 = new Farmer();
f1.name = "Mark";
f1.weight = 60.5;
f1.x = 20;
f1.y = 10;

}
}

Mark name

60.5 weight

20 x

10 y

f1
f1

• name: Mark
• weight: 60.5 kg
• location : (20 10)

After an object is created, its members can
be accessed using the dot operator (.)

Page 19

• name: ??
• weight: ?? kg
• location: (??, ??)

Phase 2: Creating and using objects
§Using the new keyword
§We will do this inside the main method

Mark name

60.5 weight

20 x

10 y

f1
f1

• name: Mark
• weight: 60.5 kg
• location: (20, 10)

public class FarmerTest {
public static void main(String[] args) {

Farmer f1 = new Farmer();
f1.name = "Mark";
f1.weight = 60.5;
f1.x = 20;
f1.y = 10;
System.out.printf(f1.x);

}
}

Page 20

Creating several objects
public class FarmerTest {

public static void main(String[] args) {
Farmer f1 = new Farmer();
Farmer f2 = new Farmer();
Farmer f3 = new Farmer();
... //change attribute values for f1,f2,f3

}
}

Mark name

60.5 weight

20 x

10 y

f1 Jessa name

51.4 weight

17 x

13 y

f2 John name

71.2 weight

5 x

19 y

f3

Each object has its own memory space

Page 21

Default values
§Data fields (object attributes or instance variables) can be of
the following types:
§ primitive

• e.g., int, double, etc
• Default values:

• 0 for a numeric type,
• false for a boolean type, and
• \u0000 for a char type.

§ reference types.
• e.g., String, arrays, or other class types.
• Default values:

• null, which means that the data field does not reference any object.

Page 22

Clicker Question
Consider the Farmer class. Which of the following is a valid

instantiation of an object of the type Farmer?

A. Farmer f = Farmer();

B. Farmer = new Farmer();

C. Farmer f = new Farmer();

D. Farmer f = new Farmer("Mike");

E. None of the above

class Farmer {
String name;
double weight;
int x, y;

}

Page 23

Clicker Question

what is the value of the weight

and name of the object f ?

A. "Mark", 30

B. null, 0

C. error

class Farmer {
String name;
double weight;

}

public static void main(String[] args){
Farmer f = new Farmer();
name = "Mark";
weight = 30;

}

Page 24

Practice
Assuming that we are developing a farm game
where farmers need to feed their animals. An
animal must be fed otherwise it becomes dead.

Create a class Cow:
§ A cow has the attributes

• nickname (String)
• stomach (int) that represents the percentage (0 to

100) of food in cow’s stomach
• isFull (boolean) that indicates whether the cow is full

Write a program to
§ Create two Cow instances (objects) set their

attributes to any values
§ Display the information of the two Cow

instances.

Page 25

Page 26

Updating Our Design
§The blueprint of a group of objects of the
same type is represented by a class.

§The class defines the attributes and
behaviors for objects.
§ Attributes

• defined as variables inside our class
• We call them “instance variables”

§ Behavior (actions)
• defined as methods inside our class

ü

Actions
Move right
Move left
Move up
Move down

Attributes
String name
double weight
int x, y

Page 27

Adding Behaviour to Our Design
§Example: the Farmer class

class Farmer {
//instance variables (attributes)
String name;
double weight;
int x, y;

//methods (actions)
public void moveUp() {y++;}
public void moveDown() {y--;}
public void moveRight(){x++;}
public void moveLeft() {x--;}

}
Note: methods inside a class can
reference instance variables without (.)

name
weight
X
y

Page 28

Using the updated design
§Using the new keyword
§We will do this inside the main method

public class FarmerTest {
public static void main(String[] args) {

Farmer f1 = new Farmer();
f1.name = "Mark";
f1.weight = 60.5;
f1.x = 20;
f1.y = 10;

}
} Mark name

60.5 weight

20 x

10 y

f1

f1.moveRight();
f1.moveDown();

21

9

f1.moveTo(19,11);

19

11

ERROR!! Why?Once implemented, the farmer will
learn this new action (see next slide)

Page 29

Adding Behaviour to Our Design
§Example: the Farmer class

class Farmer {
//instance variables (attributes)
String name;
double weight;
int x, y;

//methods (actions)
public void moveUp() {y++;}
public void moveDown() {y--;}
public void moveRight(){x++;}
public void moveLeft() {x--;}
public void moveTo(int a, int b){

x = a; y = b;
}

}

name
weight
X
y

Page 30

Practice
(1) Modify your Cow class to include the
following two methods:
§ void eat(int amount) that increments

food in stomach by the given amount.
§ void say(String msg) that causes the

animal to display the given msg on the console
preceded by its nickname.
For example, if the nickname is “Bolt” and
msg is “Hi”, the output is
• Bolt says: Hi!

(2) Modify eat method such that stomach is
never larger than a 100 at which isFull is set to
true. Also, make sure the cow can’t eat anymore
if it is full (i.e., isFull = true).

Attributes
• String nickname
• int stomach
• boolean isFull
Methods
• eat(…)
• say(…)

Page 31

Caution
Recall that you can invoke a method directly from the Math class
using Math.methodName, e.g., Math.random().

In the previous example, can we use Cow.say()?
§The answer is no. All the methods used before this chapter are
static methods, which are defined using the static keyword.
Static methods can be invoked directly from their class.
§However, say() is not static. It must be invoked from an
object using: objectRefVar.methodName(arguments)

• e.g., Cow c1 = new Cow; c1.say();

§More details on this later, in the section “Static Variables,
Constants, and Methods.”

Page 32

Page 33

Another Solution
public class TV {

//attributes
private int channel, volumeLevel;
private boolean on;
//constructor
public TV() {turnOn(); setChannel(1); setVolume(1); }
//methods
public void turnOn() {on = true;}
public void turnOff() {on = false;}
public void setChannel(int newChannel) {

if(!on) System.out.println("Cannot change channel. TV is off!");
//change case below to better control channels instead of displaying an error
else if(newChannel<1 || newChannel>120)

System.out.println("Invalid channel value!");
else channel = newChannel;

}
public void setVolume(int newVolLevel) {

if(!on) System.out.println("Cannot change volume. TV is off!");
else if(newVolLevel<1)volumeLevel = 1;
else if(newVolLevel>7)volumeLevel = 7;
else volumeLevel = newVolLevel;

}
public void channelUp() {setChannel(channel + 1);}
public void channelDown() {setChannel(channel - 1);}
public void volumeUp() {setVolume(volumeLevel+1);}
public void volumeDown() {setVolume(volumeLevel-1);}

}

Page 34

Constructors
§What if I want to initialize objects as I create them?

§ Example:

Farmer f1 = new Farmer();

f1.name = "Mark";
f1.weight = 60.5;
f1.x = 20;
f1.y = 10;

Farmer f1 = new Farmer("Mark", 60.5, 20, 10);

Page 35

Constructors, cont’d
§Constructors play the role of initializing objects.

§Constructors are a special kind of method.

§They have 3 peculiarities:
§ Constructors must have the same name as the class itself.
§ Constructors do not have a return type -- not even void.
§ Constructors are invoked using the new operator when an

object is created.

Page 36

Constructors: Example
§Example: the Farmer class
class Farmer {

//instance variables
String name;
double weight;
int x, y;
//constructors
Farmer(String aName, int aWeight, int x1, int y1){

name = aName;
weight = aWeight;
x = x1;
y = y1;

}
//methods
public void moveUp() {y++;}
public void moveDown() {y--;}
public void moveRight(){x++;}
public void moveLeft() {x--;}
public void moveTo(int a, int b) { x = a; y = b; }

}

Page 37

Constructors: Example
public class FarmerTest {

public static void main(String[] args) {
Farmer f1 = new Farmer("Mark", 60.5, 20, 10);
Farmer f2 = new Farmer("Jessa", 51.4, 17, 13);
Farmer f3 = new Farmer("John", 71.2, 5, 19);

}
}

Mark name

60.5 weight

20 x

10 y

f1 Jessa name

51.4 weight

17 x

13 y

f2 John name

71.2 weight

5 x

19 y

f3

Page 38

Try this now…
class Farmer {

//instance variables
...
//constructors
Farmer(String aName, int aWeight, int x1, int y1){

name = aName;
weight = aWeight;
x = x1;
y = y1;

}
//methods
...
...
public static void main(String[] args) {

Farmer f1 = new Farmer("Mark", 60.5, 20, 10);
Farmer f2 = new Farmer("Jessa", 51.4, 17, 13);
Farmer f3 = new Farmer(); // ERROR!! WHY??

}
}

Page 39

The Default Constructor
§A default constructor is provided automatically only if no
constructors are explicitly defined in the class.
§ It sets the attributes to their default values:

§ String à null
§ Numeric à zero
§ Boolean à false

§ In the previous example, the programmer included a four-
argument constructor, and hence the default constructor was not
provided.

Page 40

Problem Fixed!!
class Farmer {

//instance variables
...
//constructors
Farmer(){ //now we have a zero-arg constructor
}
Farmer(String fname, int fweight, int fx, int fy){

name = fname;
weight = fweight;
x = fx;
y = fy;

}
//methods
...
public static void main(String[] args) {

Farmer f1 = new Farmer("Mark", 60.5, 20, 10);
Farmer f2 = new Farmer("Jessa", 51.4, 17, 13);
Farmer f3 = new Farmer(); // No error!!

}
}

Page 41

Practice
1) Add two constructors to your Cow class:
§ A zero-argument constructor to set the stomach

to 50 and nickname to “Anonymous”.
§ A two-argument constructor to set the cow’s

nickname and stomach to given values. Make
sure stomach doesn’t get a value larger than
100.

Q: Should we also create a 3-arg constructor
(nickname, stomach, isFull)?

Answer: NO, isFull should be set based on value of
stomach.

2) Test your class by creating a Cow instance
with (stomach = 30, nickname=Bolt),
make it eat 10 food units, and then make it say
something like “Hi”.

Attributes
• String nickname
• int stomach
• boolean isFull
Methods
• Cow()
• Cow(…)
• eat(…)
• say(…)

Page 42

Try this at home!

§Write a class Circle which has:
§ an instance variable (attribute) double radius.
§ a no-argument constructor that sets radius to 10.
§ a one-argument constructor that sets radius to a given value.
§ a method setRadius that changes the radius to a given value.
§ two methods getArea and getPerimeter that return the area

and perimeter respectively.

§Test your class by creating three instances of Circle and
invoke their different methods.

Page 43

Page 44

UML Notation
§UML stands for Unified Modeling Language
§UML diagrams are one method for representing and
communicating a model of the software being developed.

Attributes:
String name
double weight
int x, y

Behaviour:
void moveRight()
void moveLeft()
void moveUp()
void moveDown()
void moveTo(int a, int b)

Farmer
name: String
weight: double
x: int
y: int

Farmer()
Farmer(name: String, weight: double, x:int, y:int)
moveUp(): void
moveDown(): void
moveRight(): void
moveLeft(): void
moveTo(int x, int y): void

Class name

Attributes
(data fields)

Constructors
and
Methods

Page 45

UML Notation, cont’d

Circle

radius: double

Circle()
Circle(newRadius: double)
getArea(): double

Class name

 Data fields (properties)

 Constructors and
methods

circle1: Circle

radius = 1.0

circle2: Circle

radius = 25

circle3: Circle

radius = 125

Objects of the
Circle type

In the class diagram, the data field is denoted as
dataFieldName: dataFieldType

The constructor is denoted as
ClassName(parameterName: parameterType)

The method is denoted as
methodName(parameterName: parameterType): returnType

Page 46

Page 47

Remember: Primitive vs. Reference Types
§ Java’s types are divided into:

§ 1. Primitive types
• Includes boolean, byte, char, short, int, long, float

and double.
• A primitive-type variable stores, in its location in memory, a value of its

declared type.

§ 2. Reference types
• Includes all non-primitive types, (e.g., Arrays, Strings, Scanner, etc.)
• A reference-type variable (or a reference) stores, in its location in

memory, data which Java uses to find the object in the memory.
• Such a variable is said to

refer to an object in the program.

§ Exampe:

i 5
Memory

i 5
nums 7451b0af

9
4int [] nums = {9,4};

int i = 5; nums

Page 48

Garbage Collection
§Consider the following code:

Circle c1 = new Circle();
Circle c2 = new Circle();
c1 = c2

§ In this example, c1 points to the same object referenced by c2.

§The object previously referenced by c1 is no longer
referenced. This object is known as garbage. Garbage is
automatically collected by JVM.

§TIP: If you know that an object is no longer needed, you can
explicitly assign null to a reference variable for the object.

§Bottom line: JVM will automatically collect the space if the
object is not referenced by any variable.

Page 49

Advantages of Object Oriented Programming (OOP)

Modularization
§ Big problem into smaller subproblems.
§ Improves understandability

Encapsulation and Reuse
§ Hide complexity and protect low-level functionality.
§ Reuse code in other programs

Understandability (abstraction)
§ Composability (big objects are built off smaller ones)

• More about this later

Maintenance
§ Easier to change code of individual modules

Properties Methods

Scary big problem

Page 50

Page 51

Remember: key concepts
Object-oriented programming (OOP)
§ It is a programming paradigm based on the concept of "objects"

Objects
§ An object is an entity in the real world. An object has

• a unique identity,
• state (also known as properties or attributes).
• behavior (methods): what the object can do.

Classes
§ Objects of the same type are defined using a common class.

• A class is a template or blueprint that defines the properties and
behaviors for objects.

§ A Java class uses
• variables to define the state
• methods to define behaviors.
• Constructors to perform initializing actions

Page 52

Summary so far
§Terminology:

§ Object-oriented programming (OOP), classes, objects, instance
variable, class methods.

§Creating a class with instance variables and methods
§Purpose, use, and definition of constructors.
§Creating objects using new
§Calling object’s methods using the dot (.) operator

Page 53

Page 54

What is next…
§ In this part, we will discuss more topics related to basic OOP
programming, specifically
§ Public/Private Visibility Modifiers
§ Data Field Encapsulation
§ this keyword
§ static modifier
§ Passing Objects to Methods
§ Array of Objects

Page 55

Public/Private Visibility Modifiers
§Access modifiers are used for controlling levels of access to
class members in Java. We shall study two modifiers:
public,

• The class, data, or method is visible to any class in any package.

Private:
• The data or methods can be accessed only by the declaring class.

§ If no access modifier is used, then a class member can be
accessed by any class in the same package.

§We will discuss other visibility modifiers later!

Page 56

Data Field Encapsulation
§ It is preferred to declare the data fields private in order to

§ protect data from being mistakenly set to an invalid value
• e.g., c1.radius = -5 //this is logically wrong

§ make code easy to maintain.

§You may need to provide two types of methods:
§ A getter method (also called an 'accessor' method):

• Write this method to make a private data field accessible.

§ A setter method (also called a 'mutator' method)
• Write this method to allow changes to a data field.

§Usually, constructors and methods are created public unless we
want to “hide” them.

Page 57

The Three Pillars of OOP

COSC 121

Page 58

Practice

§Write a public class SimpleCircle which has:
§ an instance variable double radius.
§ a no-argument constructor that sets radius to 10.
§ a one-argument constructor that sets radius to a given value.
§ a method setRadius that changes the radius to a given value.
§ two methods getArea that returns the area.

§Test your class by creating three instances of SimpleCircle and
invoke their different methods.

Animation

Page 59

TestCircle is the main class. Its sole purpose is to test
the second class.

We could include the main method in SimpleCircle
class, and hence SimpleCircle will be the main class.

Solution

class SimpleCircle {
//Attributes
private double radius;
//Constructors
public SimpleCircle() {
setRadius(1);

}
public SimpleCircle(double radius){
setRadius(radius);

}
//Methods
public double getRadius() {
return radius;

}
public void setRadius(double r){
if (radius >= 0)

radius = r;
}
public double getArea() {
return radius*radius*Math.PI;

}
}

Page 60

The this Keyword
§The this keyword is the name of a reference that an object
can use to refer to itself.

§Uses:
§ To reference class members within the class.

• Class members can be referenced from anywhere within the class
• Examples:

• this.x = 10;
• this.amethod(3, 5);

§ To enable a constructor to invoke another constructor of
the same class.
• A constructor can only be invoked from within another constructor
• Examples:

• this(10, 5);

Page 61

Practice
Code these two classes in Java
§ Make sure that no invalid values are assigned to the attributes.
§ Use the “this” keyword whenever possible.

§ The - sign indicates private modifier
§ The + sign indicates public modifier

Circle
-radius: double
-color: String
-filled: Boolean

+Circle()
+Circle(radius: double)
+Circle(radius: double, color: String, filled:
boolean)

+getters/setters for all attributes

+getArea(): double
+getPerimeter(): double

+toString(): void

Rectangle
-width: double
-height: double
-color: String
-filled: Boolean

+Rectangle()
+Rectangle(width: double, height: double)
+Rectangle(width: double, height: double,
color: String, filled: boolean)

+getters/setters for all attributes

+getArea(): double
+getPerimeter(): double

+toString(): void

Page 62

Solution
public class Circle {

// attributes
private String color;
private boolean filled;
private double radius;
// constructors
public Circle() { this(1,"Black",true); }
public Circle(double radius) { this(radius, "Black", true);}
public Circle(double radius, String color, boolean filled) {

setRadius(radius);
setColor(color);
setFilled(filled);

}
// methods
public double getArea() {return Math.PI*radius*radius;}
public double getPerimeter(){return 2*Math.PI*radius;}
// setters/getters
public String getColor() { return color;}
public void setColor(String color) { this.color=color;}
public boolean isFilled() { return filled;}
public void setFilled(boolean filled){ this.filled=filled;}

public double getRadius() { return this.radius;}
public void setRadius(double radius){

if(radius >= 0) this.radius = radius;
}
// to string
public String toString() {

return "radius="+radius+",color="+color+",filled="+filled;
}

}

public class Rectangle {
// attributes
private String color;
private boolean filled;
private double width,height;
// constructors
public Rectangle() { this(1,1,"Black",true);}
public Rectangle(double width,double height) { this(width, height,"Black",true); }
public Rectangle(double width, double height, String color, boolean filled) {

setWidth(width); setHeight(height);
setColor(color);
setFilled(filled);

}
// methods
public double getArea() {return width * height;}
public double getPerimeter() {return 2 * (width + height);}

// setters/getters
public String getColor() {return color;}
public void setColor(String color) { this.color = color;}
public boolean isFilled() {return filled;}
public void setFilled(boolean filled) { this.filled = filled;}
public double getWidth() {return width;}
public void setWidth(double width) { if(width >= 0) this.width = width;}
public double getHeight() {return height;}
public void setHeight(double height) {if(height >= 0) this.height = height;}

// to string
public String toString() {

return "color="+color+", filled="+filled+", width="+width+", height="+height;
}

}

Note how much code
redundancy we have!
Inheritance can solve this!

Page 63

Practice
Given this Cow class à (which we
created before in a practice question):
§ Q1: change all attributes to private

and all methods and constructors to
public.

§ Q2: create setters and getters for
nickname and stomach attributes.
make sure that:

• nickname starts with a letter and it
is at least 4 characters

• stomach value is always between 0
and 100 (inclusive). If a value >100 is
given, set stomach to 100.

§ Q3: create a getter for full (but not
a setter).

• full can only be set based on
stomach

§ Q4: make any necessary changes to
• reduce code redundancy and

properly use the setters and getters
in your class

• in setters, give your arguments the
same name of the attributes to which
they are related.

public class Cow {
String nickname;
int stomach;
boolean full;

Cow(){nickname = "Anonymous"; stomach = 50;}
Cow(String n, int st){

nickname = n;
if(st >= 0) {

stomach = st;
if(stomach >= 100) {

stomach = 100;
full = true;

}
}

}

void eat(int amount) {
if(amount>0) {

stomach += amount;
if(stomach >= 100) {

stomach = 100;
full = true;

}
}else {

System.out.println("invalid food amount.");
}

}
void say(String msg) {

System.out.println(nickname + " says: " + msg);
}

}

Page 64

Solution
public class Cow {

private String nickname;
private int stomach;
private boolean full;

public Cow2(){this("Anonymous", 50);}
public Cow2(String nickname, int stomach){

setNickname(nickname);
setStomach(stomach);

}

public void eat(int amount) {
if(amount >= 0)

setStomach(stomach + amount);
else

System.out.println("invlaid food amount.");
}

public void say(String msg) {
System.out.println(nickname + " says: " + msg);

}

//SETTERS
public void setNickname(String nickname) {

char firstchar = nickname.charAt(0);
int len = nickname.length();
if(len>=4 && Character.isLetter(firstchar))

this.nickname = nickname;
else

System.out.println("invalid nickname.");
}
public void setStomach(int stomach) {

if(stomach >= 0) {
stomach = stomach>100? 100 : stomach;
full = stomach >= 100;

}else {
System.out.println("invalid stomach value.");

}
}
//'full' attribute is a read only -> no setFull()

//GETTERS
public String getNickname() {return nickname;}
public int getStomach() {return stomach;}
public boolean isFull() {return full;}

}

Page 65

Practice

 TV
channel: int
volumeLevel: int
on: boolean

 TV()

 turnOn(): void
 turnOff(): void
 setChannel(newChannel: int): void
 setVolume(newVolumeLevel: int): void
 channelUp(): void
 channelDown(): void
 volumeUp(): void
 volumeDown(): void

The current channel (1 to 120) of this TV.
The current volume level (1 to 7) of this TV.
Indicates whether this TV is on/off.

Constructor(defaults: channel 1, volume=1,
turned on

Turns on this TV.
Turns off this TV.
Sets a new channel for this TV.
Sets a new volume level for this TV.
Increases the channel number by 1.
Decreases the channel number by 1.
Increases the volume level by 1.
Decreases the volume level by 1.

Write a class TV according to
the following UML diagram.

Page 66

Solution
The constructor and methods
in the TV class are defined
public so they can be
accessed from other classes.

Note that
§ the channel and volume

level are not changed if
the TV is not on.

§ Before either of these is
changed, its current
value is checked to
ensure that it is within the
correct range.

public class TV {
//Attributes
private int channel, volume;
private boolean on;
//Constructor
public TV()
{turnOn();setChannel(1);setVolume(1);}
//Methods
public void turnOn() {on = true;}
public void turnOff() {on = false;}
public void setChannel(int ch) {
if(on && ch>=1 && ch<=121)
channel = ch;

}
public void setVolume(int vol) {
if(on && vol>=0 && vol<=7)
volume = vol;

}
public void channelUp()
{setChannel(channel + 1);}

public void channelDown()
{setChannel(channel - 1);}

public void volumeUp()
{setVolume(volume+1);}

public void volumeDown()
{setVolume(volume-1);}

}

Page 67

Interactions between Objects
§ In the previous example, you have seen the code TV class.
Once you create an object of the type TV (highlighted below),
other objects could call the TV methods perform certain actions.
§ Example scenario:

• The Kid presses the ON button on myRemote Object (an event).
• myRemote calls a method myTV.turnOn() which cause the TV object

to turn on.

:myTV

:kid

:myRemote

:satellite

Page 68

The static Modifier
§Static class members:

§ Static variables (also known as class variables) are shared by
all the instances (objects) of the class.

§ Static methods (also known as class methods) are not tied to
a specific object (they carry out a general function)
• Example: Math.max(3, 5);

§Remember that, unlike static class members:
§ Instance variables belong to a specific instance (i.e. object).
§ Instance methods are invoked by an instance of the class

Page 69

The static Modifier, cont’d
§Assume we modify Circle class, which originally defines the
instance variable radius, and add a static variable
numberOfObjects to count the number of circle objects created.
We also add static method getNumberOfObjects.
§ See the example on the next slide.

UML notation: underline
static class members

Page 70

Practice
 Circle
 - radius: double
 - numberOfObjects: int

 + Circle2()
 + Circle2(radius: double)

+ getRadius(): double
 + setRadius(radius: double): void
 + getNumberOfObjects(): int
 + getArea(): double

The radius of this circle (default: 1.0).
The number of circle objects created.

Constructs a default circle object.
Constructs a circle object with the specified
radius.
Returns the radius of this circle.
Sets a new radius for this circle.
Returns the number of circle objects created.
Returns the area of this circle.

The + sign indicates public modifier
The - sign indicates private modifier
Underlined text is static

Page 71

Solution public class Circle {
private double radius;
private static int numberOfObjects;
public Circle() { this(1);}
public Circle(double radius) {

setRadius(radius);
numberOfObjects++;

}
public double getRadius() {

return radius;
}
public void setRadius(double radius) {

if(radius>=0) this.radius = radius;
}
public static int getNumberOfObjects() {

return numberOfObjects;
}
public double getArea() {

return radius * radius * Math.PI;
}

}

Page 72

public class CircleTest {
public static void main(String[] args) {
System.out.print("Number of Circle objects: ");
System.out.println(Circle.getNumberOfObjects());

//Create two circles
Circle c1 = new Circle();
Circle c2 = new Circle(9);

// Changing the radius of c1
c1.setRadius(18);

System.out.print("Number of Circle objects: ");
System.out.println(Circle.getNumberOfObjects());

}
}

Solution, cont’d

It is better to Reference static
members by their class name.

Page 73

Scope of Variables
§ instance and static variables

§ Scope is the entire class.
§ They can be declared anywhere inside a class.

§ local variables
§ Scope starts from its declaration and continues to the end of

the block that contains the variable.
§ A local variable must be initialized explicitly before it can be

used.

Page 74

Passing Objects to Methods
§Remember: Java uses pass-by-value for passing arguments to
methods:
§ Passing primitive variable:

• the value is passed to the parameter, which means we will have two
distinct primitive variables.
• i.e. changes that happens inside the method do not influence the

original variable.

§ Passing reference variable:
• the value is the reference to the objects, which means the two

references (the argument and the parameter) will refer to the same
object. Changes that happen inside the method using the passed
reference are applied to that object.

Page 75

Example

Output:
Before foo: x is 0, c.radius is 0
After foo: x is 0, c.radius is 7

Note how the primitive variable x didn’t
change while the object c has changed

public static void main(String[] args) {
int x = 0;
Circle c = new Circle(0);

System.out.printf("Before foo: x is %d, c.radius is %.0f\n",x,c.getRadius());
foo(x, c);
System.out.printf("After foo: x is %d, c.radius is %.0f\n",x,c.getRadius());

}

public static void foo(int a, Circle b) {
a = 7;
b.setRadius(7);

}
class Circle {
private double radius;
public Circle(double radius){
setRadius(radius);

}
public double getRadius() {
return radius;

}
public void setRadius(double r){
if (radius >= 0)

radius = r;
}

}

Page 76

Array of Objects
To create an array of objects, you need to follow two steps:
1. Declaration of reference variables:
§ You can create an array of objects, for example,

Circle[] circles = new Circle[4];
§ An array of objects is actually an array of reference variables. We don’t

have any objects created yet.

2. Instantiation of objects:
§ To initialize circles, you can use a for loop like this one:

for (int i = 0; i < circles.length; i++)
circles[i] = new Circle();

circles
(reference)

circles[0]

circles[1]

Circle
objects

circles[2]

circles[3]

Page 77

Array of Objects, cont.
§You may then invoke any method of the Circle objects using a
syntax similar to this:

§circles[1].setRadius(1);

§ , which involves two levels of referencing:
§ circles references to the entire array, and
§ circles[1] references to a Circle object.

Page 78

Example

//create circles array
Circle[] circles = new Circle[4];
for (int i = 0; i < circles.length; i++)
circles[i] = new Circle(i);

//randomize radius
for (int i = 0; i < circles.length; i++)
circles[i].radius = Math.random()*10;

//print areas of all circles
for (int i = 0; i < circles.length; i++)
System.out.println(circles[i].getArea());

class Circle {
private double radius;
public Circle(double radius){

setRadius(radius);
}
public double getRadius() {

return radius;
}
public void setRadius(double r){

if (radius >= 0)
radius = r;

}
public double getArea() {

return radius*radius * Math.PI;
}

}

circles
(reference)

circles[0]

circles[1]

Circle
objects

circles[2]

circles[3]

